Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(24)2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38138574

RESUMO

Biologically active compounds of natural or synthetic origin have a complex structure and generally contain various structural groups among which polycyclic cage amines are found. Hexaazaisowurtzitanes are representatives of these amines and studies on their biological activity began less than two decades ago, starting with research on the environmental impact of CL-20. This research helped to evaluate the risks of potential pollution in the habitat environments of living organisms and determine whether the chemical compounds in question could be utilized in pesticides, herbicides, fungicides, or medicinal drugs. The nomenclature of hexaazaisowurtzitane compounds has recently been expanded significantly, and some of them have demonstrated promise in the design of medicinal drugs. This paper review studies the pharmacological activity of the acyl derivatives of hexaazaisowurtzitane. Most of the compounds have been found to possess a high analgesic activity, providing a solution to the pressing issue of pain management in current pharmacology. Analgesic drugs currently used in the clinical practice do not meet all of the efficacy and safety requirements (gastro-, nephro-, hepato-, haematotoxicity, etc.). The material presented in the seven sections of this paper highlights information about hexaazaisowurtzitane derivatives. Furthermore, they have been observed to exhibit anti-inflammatory, anticonvulsant, antihypoxic, and antimetastatic activities, which render them highly promising for evaluation in various fields of medicinal practice.


Assuntos
Herbicidas , Praguicidas , Analgésicos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Herbicidas/farmacologia , Aminas
2.
ACS Omega ; 6(23): 15400-15411, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34151118

RESUMO

The number of candidate molecules for new non-narcotic analgesics is extremely limited. Here, we report the identification of thiowurtzine, a new potent analgesic molecule with promising application in chronic pain treatment. We describe the chemical synthesis of this unique compound derived from the hexaazaisowurtzitane (CL-20) explosive molecule. Then, we use animal experiments to assess its analgesic activity in vivo upon chemical, thermal, and mechanical exposures, compared to the effect of several reference drugs. Finally, we investigate the potential receptors of thiowurtzine in order to better understand its complex mechanism of action. We use docking, molecular modeling, and molecular dynamics simulations to identify and characterize the potential targets of the drug and confirm the results of the animal experiments. Our findings finally indicate that thiowurtzine may have a complex mechanism of action by essentially targeting the mu opioid receptor, the TRPA1 ion channel, and the Cav voltage-gated calcium channel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...